
Methods and Tools for Prototyping
Voice Interfaces

Julia Cambre
Carnegie Mellon University
Pittsburgh, PA, USA
jcambre@cs.cmu.edu

Chinmay Kulkarni
Carnegie Mellon University
Pittsburgh, PA, USA
chinmayk@cs.cmu.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright held by the owner/author(s).
CHI’20, April 25–30, 2020, Honolulu, HI, USA
ACM 978-1-4503-6819-3/20/04.
https://doi.org/10.1145/3334480.XXXXXXX

Abstract
Voice technology has experienced tremendous growth in
both sophistication and popularity in recent years. This pa-
per considers how researchers and designers might build
novel and intuitive voice interfaces. We begin by briefly de-
scribing two of the key design techniques for voice design—
elicitation methods and Wizard of Oz. We then describe the
available tools for prototyping and implementing voice in-
terfaces, and attempt to categorize these according to their
function, ease of use, and the fidelity of prototypes they can
produce. Finally, we conclude by describing three major as-
pects of voice communication that are not yet supported by
existing prototyping tools, and motivate the need for new
design tools in future work.

Introduction
Voice interfaces are notoriously difficult to design well [2].
In addition to the technical challenges of understanding a
user’s speech and producing natural-sounding synthesized
speech in response, the richness and variation in language
and considerable social and psychological factors involved
make conversational interface design a hard problem [4].

Despite these challenges, voice promises powerful oppor-
tunities for interaction: it can enable convenient and more
efficient forms of input and output, offers novel forms of en-
tertainment, companionship, and learning opportunities,

https://doi.org/10.1145/3334480.XXXXXXX


and provides numerous accessibility benefits. Driven by
substantial improvements in speech technology in recent
years, there has been a recent resurgence in popularity and
interest in voice interfaces, both within the research com-
munity, and in commercial applications.

How should we design the next generation of voice inter-
faces? As Menneckin et al. [2] recently noted, existing tools
for voice prototyping “are not fully customizable and will not
allow designers to model the depth needed for realistic in-
teractions with a domain-specific assistant. They also do
not allow full access to the user utterances and speech data
[...], which might be required for the prototyping of the en-
visioned activities” [2]. At a more fundamental level, voice
interfaces still lack the sorts of established design principles
that have long guided graphical user interface development,
and interaction patterns often do not translate well from
graphical to speech interfaces [3]. As we move towards a
future in which voice interfaces are ubiquitous, developing
the speech-specific design principles—and the methods
and tools that allow designers to prototype novel and more
intuitive voice interactions—will be critically important.

Elicitation Methods
Web on the Wall
“Is now a good time?”

Wizard of Oz Tools
Woz Way
Needfinding Machine
AR AR Facade

Dialogue Management 
Systems
SUEDE
Voiceflow
Botsociety
Botmock
SayspringSayspring

Cross-platform 
Development Toolkits
Jovo

Natural Language 
Understanding Platforms
Dialogflow
AlAlexa Skills Kit

Fi
de
lit
y

R

C

Figure 1: Overview of the voice
interface prototyping methods and
tools, ordered by increasing levels
of fidelity. Beneath each category
are examples of relevant research
systems (denoted with an R) and
commercial systems (denoted with
a C). Research studies on
Elicitation Methods and Wizard of
Oz Tools are not specifically
discussed in this paper, but may be
of interest to readers.

This paper aims to describe the design space of methods
and tools for developing voice user interfaces. Specifi-
cally, we consider several “layers” involved in the design
of a voice interface, and organize the key prototyping tech-
niques and systems that support voice interface develop-
ment into five topics, described in Figure 1. In the interest of
space, we focus primarily on existing prototyping tools, and
close with our main contribution of describing several as-
pects of voice design that we believe are currently not well-
supported by available prototyping tools, and how these
opportunities might be addressed in future work.

Low-fidelity prototyping techniques
One crucial prerequisite for designing an effective VUI is es-
tablishing a solid understanding of users’ needs and expec-
tations around how to interact with the system. Two such
methods that help accomplish this are elicitation methods
and Wizard of Oz. At a high level, in an elicitation study,
the participant is provided with an outcome of some action
and asked to generate whatever command(s) they believe
would most naturally yield that outcome state [6]. While
the method has been especially successful for designing
gestural interfaces, it has also been successful in informing
speech-based interaction in capturing the variety—and ex-
posing the similarities—in how users are naturally inclined
to interact with an interface.

Perhaps the most common approach to designing voice in-
terfaces is through Wizard of Oz [1, 2]. In a Wizard of Oz
(WoZ) study, users interact with a system that appears to
be functional, while an experimenter in fact controls some
aspect of the user experience behind the scenes. With an
interaction modality like voice, WoZ studies are particu-
larly useful in allowing designers to rapidly prototype an
interaction without overcoming the considerable technical
challenges involved in natural language understanding.

Voice application development tools
Methods such as Wizard of Oz and Elicitations are espe-
cially appropriate and useful for open-ended, early-stage
exploration. At a certain point, however, once the problem
area is well-scoped, a voice interface developer’s emphasis
may shift from a needfinding approach into a design stage
in which the artifacts they build more closely resemble the
final voice application they intend to implement. While the
boundary between methods and tools for exploratory de-
sign and for implementation is difficult to define, we con-
sider the sets of development tools and methods we will



describe in what follows to operate at a higher level of fi-
delity.

Dialogue Management Systems
The first category of voice implementation tools is what we
will call Dialogue Management Systems. At a high level,
these systems allow the voice interface designer to fully
specify the possible paths in a conversation between a user
and a voice agent. Importantly, these systems are intended
to have a low barrier to entry by abstracting away lower-
level implementation details and allowing for voice interac-
tion design, often without any coding. Figure 2 illustrates
the common flowchart-like interfaces common to these dia-
logue management systems.

A

B

C

D

Figure 2: Flowchart-style
authoring tools common to
Dialogue Management Systems:
(A) SUEDE, (B) Voiceflow, (C)
Botmock, (D) Botsociety

Perhaps the earliest example of a dialogue management
system is the research tool SUEDE [1]. At the time SUEDE
was developed (2000), building speech interfaces required
a high degree of technical sophistication, and involved
tweaking too many low-level “knobs” and parameters to
enable exploration. By contrast, SUEDE was designed
to embody design principles analogous to informal tools
like sketches and storyboards, and to formalize and aug-
ment Wizard of Oz. Based on interviews with six practicing
speech UI designers, the creators of SUEDE identified a
three-phase process, which they called the “Design / Test
/ Analysis” method. The SUEDE interface consists of a
“script area” for writing high-level dialog examples and a
“design graph” that contains the more specific dialog flow,
involving branching conversation paths depending on the
user’s response. Within the dialog flow, the system offered
support for conversational support like slot-filling variables
based on a user’s response earlier in the dialog. To enable
easy WoZ testing, SUEDE leveraged user-recorded speech
rather than relying upon speech synthesis and recognition
technology. In testing sessions, the Wizard operates the in-

terface by listening for the user’s response and clicking the
appropriate system prompt according to the dialog graph.
Each session is then recorded as a full sequence, includ-
ing the participant’s audio response to each prompt. One
particularly novel aspect of the SUEDE model of Wizard
of Oz design was automatically injecting simulated speech
recognition errors by randomly overriding the Wizard’s “cor-
rect” choice; this technique allows for system designers to
capture how users would authentically respond to system
failures.

Within today’s voice assistant ecosystem, the most popu-
lar commercial tools available for prototyping voice inter-
faces share many of the same core features as SUEDE.
Two such systems are Voiceflow and Botsociety.

Much like SUEDE, Voiceflow offers a simple, yet powerful
drag-and-drop interface for designing voice interactions for
both the Google Assistant and Alexa platforms. Users can
drag various action and control blocks onto a canvas and
link them together to build complex forking conversations,
once again resembling a flowchart (Figure 2B). Relevant
pieces of information that a user provides within the context
of conversation can be captured as a variable for reference
later in the conversation. To design for the multimodal capa-
bilities of devices that have a screen, Voiceflow also allows
users to design visual “cards,” which display an image and
corresponding text to accompany the voice interface’s reply.
While Voiceflow brands itself as a tool to “visually design,
prototype and publish Alexa Skills and Google Actions with-
out writing code,” it also offers a high ceiling: alongside ba-
sic conversational elements like “speak” and “if/else” blocks,
users can also introduce “code” elements into their design.
The tool also allows for external integrations, which makes
it possible to call a third-party API or database to fetch ad-
ditional information. Taken together, this functionality offer a

https://www.voiceflow.com
https://botsociety.io/


low barrier to entry, but considerable room to build sophisti-
cated interactions for those with an adequate programming
background.

Another example of a dialogue management system is Bot-
society. Like Voiceflow, Botsociety is intended as a cross-
platform conversational authoring tool, but is built to support
not just voice interactions, but bots for chat-based platforms
as well (e.g. Slack, Facebook Messenger). The authoring
tools for designing a voice interaction largely reflects this
by representing the conversation between a bot and user
through a chat-like interface by default. Botsociety also sup-
ports branching conversational paths, which can optionally
be visualized as a flowchart (Figure 2D).

While Botsociety offers fewer controls over the details of
the voice interface in comparison to Voiceflow, one distin-
guishing feature is its support of multi-party conversation.
Prior work has found that voice assistants are often used
in group contexts such as with family or friends [5]. Despite
these patterns of naturalistic use, most voice prototyping
systems have a strict one-to-one conversation model be-
tween a single user and a voice assistant. By contrast, Bot-
society allows for multiple user and bot personas within a
design. While support for personalization and voice identity
recognition in multi-user conversation is not yet available
within the underlying technical architecture of skills for the
Google Assistant and Alexa, the persona feature within Bot-
society offers a useful means for designers to prototype a
genre of voice interaction that may be feasible in the near
future.

Cross (Voice) Platform Development Toolkits
In other forms of software interface development, toolkits or
cross-platform development tools allow a developer to write
code once and run it on different environments. With voice
interfaces, the dialogue management systems described

above (e.g. Voiceflow) largely serve an analogous purpose
by allowing users to toggle between different platform de-
velopment contexts (e.g. for the Alexa or Google Assistant
ecosystem) and upload their application to those platforms
with minimal additional setup.

However, beyond the cross-platform development capabil-
ities offered by the dialogue managers, Jovo is an “open-
source framework that lets you build voice apps for Amazon
Alexa and Google Assistant with one codebase.” Accord-
ing to its documentation, Jovo abstracts the common func-
tionality from Alexa and Google Assistant applications and
allows developers to control both the speech and graphical
elements of both voice platforms.

Natural Language Understanding Platforms
To have the finest degree of control over a voice interface,
interface designers must work directly with the toolkits that
support speech interaction for a given platform. These sets
of tools, which comprise commercial options like Dialogflow
and the Alexa Skills Kit, operate at a lower level of abstrac-
tion from the Dialogue Managers. Whereas Dialogue Man-
agers aid voice interface developers in envisioning the over-
all flow of a conversation, systems like Dialogflow and the
Alexa Skills Kit (ASK) operate at the level of an individ-
ual conversational turn, and focus primarily on parsing a
user’s speech and mapping it to an inferred “intent.” Accord-
ing to the platform’s own description, “Dialogflow lets you
build conversational interfaces on top of your products and
services by providing a powerful natural language under-
standing (NLU) engine to process and understand natural
language input.” We therefore refer to these systems as
Natural Language Understanding Platforms.

Both Dialogflow and the ASK consist of similar architec-
tures, and serve in many ways like a “translator” between
the user and a voice system. Within these NLU Platforms,

https://www.jovo.tech/
https://www.dialogflow.com
https://developer.amazon.com/en-US/alexa/alexa-skills-kit


the system designer specifies a series of intents, which are
the primary unit that attributes meaning to a user’s input.
According to the Dialogflow guides, intents generally cor-
respond to one “dialog turn within a conversation.” These
intents are specified by sample utterances that a user might
use for that particular turn in the conversation. Within in-
tents, the system designer also specifies “entities” or “slots”
which specify a certain category of information or variable
definitions that the voice system attempts to extract from
user utterances. Slots / entities can optionally be marked
as required, such that the system will follow up and ask the
user for any missing information before the intent is con-
sidered resolved. In these systems, having a well-specified
set of sample user utterances and well-scoped slot / entity
definitions is crucial in ensuring that the correct intent gets
detected at the right time.

NLU platforms make significant trade-offs in sacrificing
ease-of-use in favor of extremely granular control over the
turn-level mechanics of a conversation (e.g. by tuning the
natural language models to “listen” for certain phrases or
specialized vocabulary). Managing proper intent matching
and maintaining the conversational state can get difficult
for voice applications involving more than a handful of con-
versational turns. Additionally, because NLUs require that
the voice designer reads through lengthy documentation
and has substantial coding knowledge in order to use them,
they face considerable barriers to entry. Because of this,
NLU platforms primarily suitable only in the latest stages of
the design process when implementing a voice interaction
is otherwise impossible through simpler tools like a Dia-
logue Manager.

Future opportunities for voice prototyping
Already, the tools and methods available have enabled a
wide range of applications for voice. In the sections above,

we presented the existing design tools roughly in order from
those that enable low to high fidelity prototyping. In reality,
however, if we consider the Dialogue Management Sys-
tems along with the NLU toolkits, it’s important to note that
the Dialogue Management Systems are very much limited
by what the NLU toolkits make available; indeed, systems
such as Voiceflow are built to be directly compatible with
toolkits like Dialogflow and the ASK. In other words, the
designs that Voiceflow, Botsociety and others enable are
constrained by the affordances of existing voice platforms.

As voice technologies continue to improve, we will soon
have new possibilities for interaction that are not currently
available in systems like the Google Assistant or Alexa and
the prototyping tools that are built upon them [2]. How could
voice prototyping tools anticipate and help design for these
and other forms of communication? Here, we outline a few
important areas for future voice tool development.

Long-term interactions
One area that has immediate practical use but is not cur-
rently well-supported by prototyping systems is envisioning
how a user will interact with the same voice interface over
time. Here, we are specifically talking about repeated inter-
actions over several sessions spanning days, months, or
even years. At present, a voice designer who wishes to ref-
erence data from a prior interaction session with the agent
would have to manage a complex series of API calls with a
third-party database. Future voice prototyping tools could
account for this by allowing users to simulate “time-travel”
across multiple sessions, and to offer design blocks that
provide easier reference to data from prior conversations.

Turn-taking behavior
Today’s voice assistants—and the prototyping tools that
support them—only support rigid conversational turn pat-
terns in which the user and voice assistant alternate in neat



turns, and cannot speak over one another. Indeed, these
turn-taking constraints are baked into the Google Assistant
and Alexa speech infrastructure: according to documen-
tation, the systems will consider a conversation “closed” if
they do not hear a response from users within 8 or 5 sec-
onds, respectively. However, real human speech is far less
structured: conversation partners may interrupt or talk over
one another, and can usually intuit whether a given utter-
ance is intended for them without needing to preface each
statement with the partner’s name (unlike voice assistants,
which require wake words like “Hey Siri”). As natural lan-
guage processing becomes more sophisticated at modeling
the intended audience of a user’s utterance, we may see a
shift towards more continuous, “always-listening” models.
Introducing interruptibility and wake-word-free conversation
will inevitably change the nature of users’ interactions with
voice interfaces, and will be important to prototype.

Author bios
Julia Cambre is a third year PhD
student in the Human-Computer
Interaction Institute at Carnegie
Mellon University. Her prior and
ongoing research has taken both
theoretical and applied approaches
to understanding and improving
voice interaction: in one line of
work, she is interested in how the
way a smart device sounds shapes
users’ experiences with the device
(CSCW 2019), and in understanding
which voices are best for listening
to long-form content (CHI 2020). In
another line of work, Julia has built
voice-based systems, such as a
voice assistant specifically designed
to support biologists working in a
wet lab (DIS 2019). During the sum-
mer of 2019, she interned at Mozilla,
where she helped to build Firefox
Voice, an experimental extension
that enables users to control their
browser through voice commands.
Through an ongoing collaboration
with Mozilla, she is currently ex-
ploring how to make voice-driven
actions easier to prototype and build,
particularly for end-users without
programming experience. Julia is
eager to engage in the workshop
as an opportunity to meet the CUI
community, contribute relevant expe-
riences working with voice, and find
opportunities for collaboration.

Chinmay Kulkarni is an Assistant
Professor of Human Computer
Interaction at Carnegie Mellon
University, where he directs the Ex-
pertise@Scale lab. In his research,
Chinmay introduces new collabo-
rative computer systems that help
people learn and work better.

Paralinguistic communication
Speech is an incredibly information-dense mode of commu-
nication; in addition to the meaning conveyed by the words
themselves, the paralinguistic elements of speech (such as
pitch, emphasis, or speaking rate) are also highly expres-
sive. The same phrase can take on vastly different mean-
ings as a statement, command, or question based on how
it is said. However, most current voice interfaces entirely
discard the paralinguistic elements of a user’s speech, and
instead perform basic speech transcription prior to mak-
ing inferences about the user’s intent. Similarly, the speech
output from voice interfaces is also largely “flat” or context-
agnostic; to better match the intended meaning or inflection
of a phrase, voice designers currently need to manually
annotate speech content using Speech Synthesis Markup
Language (SSML). Moving forward, voice prototyping sys-
tems should incorporate richer tools for understanding and
acting upon paralinguistic elements in a user’s speech, and

generating more appropriate-sounding responses in turn.
For example, alongside intent detection, natural language
toolkits could also detect a user’s tone of voice. Within the
dialogue manager, this tone of voice feature could then help
modify the agent’s tone in response (e.g. apologetic if the
user sounds angry, sympathetic if the user sounds sad,
calm and quiet if the user sounds sleepy, and so on).

REFERENCES
[1] Scott R. Klemmer, Anoop K. Sinha, Jack Chen,

James A. Landay, Nadeem Aboobaker, and Annie
Wang. Suede: a Wizard of Oz prototyping tool for
speech user interfaces. In Proc. UIST (2000). 1–10.
DOI:http://dx.doi.org/10.1145/354401.354406

[2] Sarah Mennicken, Ruth Brillman, Jennifer Thom, and
Henriette Cramer. Challenges and Methods in Design
of Domain-specific Voice Assistants. In 2018 AAAI
Spring Symposium Series (2018).

[3] C. Murad, C. Munteanu, B. R. Cowan, and L. Clark.
Revolution or Evolution? Speech Interaction and HCI
Design Guidelines, Vol. 18. 33–45. DOI:
http://dx.doi.org/10.1109/MPRV.2019.2906991

[4] Clifford Nass and Scott Brave. Wired for speech: How
voice activates and advances the human-computer
relationship. MIT press.

[5] Alex Sciuto, Arnita Saini, Jodi Forlizzi, and Jason I
Hong. "Hey Alexa, What’s Up?": A Mixed-Methods
Studies of In-Home Conversational Agent Usage. In
Proc. DIS (2018). 857–868. DOI:
http://dx.doi.org/10.1145/3196709.3196772

[6] Jacob O. Wobbrock, Meredith Ringel Morris, and
Andrew D. Wilson. User-defined gestures for surface
computing. In Proc. CHI (2009). 1083. DOI:
http://dx.doi.org/10.1145/1518701.1518866

http://dx.doi.org/10.1145/354401.354406
http://dx.doi.org/10.1109/MPRV.2019.2906991
http://dx.doi.org/10.1145/3196709.3196772
http://dx.doi.org/10.1145/1518701.1518866

	Introduction
	Low-fidelity prototyping techniques
	Voice application development tools
	Dialogue Management Systems
	Cross (Voice) Platform Development Toolkits
	Natural Language Understanding Platforms

	Future opportunities for voice prototyping
	Long-term interactions
	Turn-taking behavior
	Paralinguistic communication

	REFERENCES 

